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University J. J. Strossmayer Osijek Bachelor Thesis

Department of Physics

Numerical Analysis and Visualization of the Trajectories of
Bodies in the Solar System

Abstract

This thesis presents a numerical analysis and visualization of the trajectories of celestial bodies in
the solar system. Utilizing Newton's laws of motion and gravitational force, differential equations
governing these motions are solved numerically using Python. Both the Euler-Cromer method
and the odeint integrator are employed, with their results graphically represented to illustrate
position. The study verifies the conservation of angular momentum through data on aphelion and
perihelion. The odeint function, dynamically adjusts its method for accuracy, while the Euler-
Cromer method ensures stability in long-term simulations. The findings confirm the numerical
methods' alignment with classical theories like Kepler's laws, demonstrating the effectiveness of
Python for astrophysical computations and establishing a foundation for future research in
celestial mechanics.



Sveuciliste J. J. Strossmayera u Osijeku Zavrsni rad

Odjel za fiziku

Numeric¢ka analiza i vizualizacija putanja tijela u Sunéevom
sustavu

Sazetak

Ovim zavsrnim radom predstavljamo numericku analizu i1 vizualizaciju putanja nebeskih tijela u
Suncevom sustavu. Koriste¢i Newtonove zakone gibanja i gravitacije, postavljamo diferencijalne
jednadZzbe koje opisuju ta gibanja te ih rjeSavamo numericki pomoc¢u Pythona. Koristimo Euler-
Cromerovu metodu 1 odeint integrator, te njihove rezultate prikazujemo graficki za ilustraciju
polozaja. Funkcija odeint dinamicki prilagodava svoju metodu za tocnost, dok Euler-Cromerova
metoda osigurava stabilnost u dugoro¢nim simulacijama. U radu potvrdujemo ocuvanje kutne
koli¢ine kretanja pomoc¢u podataka o afelu 1 perihelu. Nalazi potvrduju uskladenost numerickih
metoda s klasi¢nim teorijama poput Keplerovih zakona, te pokazuju ucinkovitost Pythona za
astrofizicke proracune i postavljaju temelj za buduca istrazivanja nebeske mehanike.
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1. Introduction

The study of celestial mechanics has fascinated scientists for centuries, tracing back to the early
observations of planetary motion by ancient civilizations. The field has evolved significantly,
with milestones including the geocentric model of Ptolemy, the heliocentric model proposed by
Copernicus, and Kepler’s empirical laws derived from meticulous observations. Isaac Newton’s
laws of motion and universal gravitation provided the theoretical framework to explain Kepler’s
observations, unifying the physics of celestial bodies and enabling the calculation of orbits.
However, analytical solutions for complex systems, such as the solar system, proved labor-
intensive and error-prone, necessitating the development of numerical methods.

In the 20th century, the advent of computers revolutionized the field of celestial mechanics,
allowing for the practical application of numerical methods to solve complex gravitational
problems. These methods, implemented in various programming languages, facilitate the
simulation and visualization of celestial motions with high precision. This thesis aims to
demonstrate the application of numerical methods, specifically the Euler-Cromer method and the
odeint integrator, in simulating the trajectories of planets within a solar system.

The study begins by introducing the fundamental principles of differential equations, essential for
describing the relationship between position, velocity, and acceleration of celestial bodies. The
transition from analytical to numerical solutions is discussed, highlighting the necessity for
numerical methods in complex systems. The Euler-Cromer method, advantageous for its stability
in oscillatory systems, and the odeint integrator, known for its efficiency in solving ordinary
differential equations, are detailed.

Subsequent sections cover the implementation of these methods using Python, leveraging its
powerful libraries such as numpy, scipy, and matplotlib. The simulation results are visualized,
providing graphical representations of planetary orbits. The study further validates the numerical
methods by verifying the conservation of angular momentum. The conclusion emphasizes the
robustness of the computational approaches and suggests directions for future research, including
the incorporation of perturbations and relativistic effects. This thesis not only contributes to the
understanding of celestial mechanics but also demonstrates the potential of numerical methods
and computational tools in advancing the field.



2.Theory

2.1, Differential Equations

2.1.1.Theory of Differential Equations

Differential equations are mathematical equations that relate a function to its derivatives. In the
context of celestial mechanics, they describe the relationship between the position, velocity, and
acceleration of celestial bodies. The general form of a second-order differential equation for a
body in motion is:

d’r F
@ ~m

where r is the position vector, v is the velocity vector, and F is the force acting on the body.

In celestial mechanics, the differential equations of motion are typically second-order ordinary
differential equations (ODEs). These equations describe the evolution of the position and velocity
of celestial bodies under the influence of gravitational forces.

e Ordinary Differential Equations (ODEs): These are differential equations containing
one or more functions of one independent variable and its derivatives. They are called
"ordinary" to distinguish them from partial differential equations, which involve multiple
independent variables.

o Initial Value Problem: In celestial mechanics, we often deal with initial value problems
where the initial position and velocity of a body are known. The goal is to determine the
future motion of the body given these initial conditions.

o Numerical Methods: Since many differential equations in celestial mechanics cannot be
solved analytically, numerical methods are employed. These methods approximate the
solutions by discretizing the equations and solving them iteratively.

The solutions to these differential equations provide the trajectory of the bodies over time.

However, due to the complexity of many-body systems, analytical solutions are often not
feasible, necessitating numerical approaches.[3]

2.1.2.Numerical Solutions of Differential Equations

Analytical solutions to differential equations are possible only for simple systems. For complex
systems like the solar system, numerical methods are employed to approximate solutions.
Common numerical methods include:

o Euler's Method: A simple, first-order method that approximates the solution by taking
small steps along the direction of the derivative:

Yn+1 =Yn Tt hf(tnv yn)



where h is the step size, y is the function value, and fis the derivative function.

e Runge-Kutta Methods: Higher-order methods that provide better accuracy by
considering intermediate points within each step. The most commonly used is the fourth-
order Runge-Kutta method (RK4):

ky = hf(tnv yn)
h k
k2 = hf(tn +E'yn +?1)

h k
ks = hf(tn +E:Yn +32')

h
ky = hf (ty +2, 30 + k)

i
Yn+1 =Yn + g(k1 + 2k, + 2k3 + ky)
2.1.3. Euler-Cromer Method

Leonhard Euler (1707—1783) was a Swiss mathematician and physicist, considered one of the
most creative mathematicians in history. He made significant contributions to many areas of
mathematics, including calculus, graph theory, mechanics, fluid dynamics, and number theory.
Euler is perhaps best known for introducing much of the modern notation used in mathematics
today, such as the concept of a function f(x), the notation e for the base of natural logarithms,
and the symbol 7 for the ratio of a circle's circumference to its diameter. Euler worked
extensively in classical mechanics, developing mathematical techniques for analyzing physical
systems.

Alfred Cromer was a 20th-century American physicist and educator, less well-known historically
compared to Euler, but his contribution is significant in the context of computational physics.
Cromer’s work is recognized primarily for introducing practical numerical methods into physics
education. While Euler developed foundational ideas in mathematics, Cromer adapted and
modified Euler's methods in a way that made them more effective for simulating physical
systems on digital computers, particularly in problems involving motion.

The Euler-Cromer method was developed to address the limitations of the original Euler method,
particularly for physics problems where numerical stability and energy conservation are
important. The original Euler method tends to produce solutions where energy grows artificially,
leading to physically incorrect results when simulating systems over long periods of time. By
modifying the step process (updating velocity before position), Cromer’s method ensures better
energy behavior in simulations, making it a valuable tool for computational physics.

Detailed Explanation:
o Euler Method: Updates position and velocity at each time step:

Ups1 = Vp + ayAt

Xpi1 = Xp + VAL



o Euler-Cromer Method: Modifies the Euler method to improve stability, particularly in
systems where energy conservation is important. In this method, the velocity is updated
first, and then the position is updated using the new velocity:

Ups1 = Up + ayAt

Xp+1 = Xp + V1At

This method is especially useful for simulating planet orbits because it keeps the simulations
stable and accurate over long periods.

2.1.4.General Numerical Solution

To get a better understanding of what we are doing in this thesis, we are going to look into a math
background of numerical, and then, analytical solution of a differential equation.

Consider a differential equation of the form:

where s(x)is a known function, and we seek a solution for f(x).To tackle this, we first look at a
simpler equation:

df (x)
dx

=g()

where g(x)is also a known function. To solve this numerically, we use an iterative approach
starting with initial values xyand f,. By incrementally increasing x and calculating f(x) step by
step, we use the Euler method, which is represented as:

df (x) = g(x)dx

This approach is continued until f(x)is known for the desired range of x values. In a computer
code, this iterative process starts with initial values xyand f,, and proceeds step by step:

frr1 = [ (ne1) = fro + 9(xn)Ax
Using this method, we can now solve the original equation in two steps by rewriting it as:

df'(x) _
dx )

First, we solve for f'(x):

f,n+1 = f,n + S(xn)Ax



Then, using this solution, we find f(x):
fari=fat f’(xn+1)Ax

Note that in the last step, we use x,,,; instead of x,,; as described earlier, this variation is known
as the Euler-Cromer method. [3], [9]
2.1.5. Analytical Solution for a Special Case

We also encounter the differential equation in a form where s(x) = —f(x) + C:

d*f (x)

dx?

=—f(x)+C

where C is a known constant. This is a version of the harmonic oscillator equation, which
describes systems like pendulums or masses attached to springs. These systems exhibit
oscillating motion. To solve this equation analytically, we seek a function f(x)whose second
derivative is proportional to the original function. Functions like sin(x)and cos(x) meet this
criterion. Thus, we can write the solution as:

f(x) =C + Acos(x — w)

where A and w are constants determined by initial conditions. To verify, we substitute this
solution into the differential equation to confirm its validity.

By understanding these numerical and analytical methods, we are now equipped to start
calculating orbits and solving more complex celestial mechanics problems. [3], [9]

2.2, History of Orbital Calculations

Historically, the understanding of planetary motion has evolved significantly. Ancient
civilizations like the Babylonians and Greeks made early attempts to describe celestial
phenomena, culminating in the geocentric model of Ptolemy. The heliocentric model proposed by
Copernicus marked a paradigm shift, which was further refined by Kepler’s empirical laws
derived from Tycho Brahe’s precise observations. Kepler’s laws described planetary motion but
lacked a theoretical foundation.

Newton’s laws of motion and his law of universal gravitation provided the theoretical framework
for Kepler’s observations. Newton's Principia Mathematica, published in 1687, unified the
physics of heavens and earth, explaining planetary motion through gravitational attraction. These
laws allowed the calculation of orbits analytically in simple cases but were labor-intensive and
error-prone for complex systems.

With the advent of computers in the 20th century, numerical methods became practical for
solving complex celestial mechanics problems. These methods, implemented in various
programming languages, have made it possible to simulate and visualize the motions of celestial
bodies with high precision. [3], [4], [5]



2.3, Kepler's Laws

2.3.1.Kepler’s First Law

The first of Kepler's laws is about the shape of planetary orbits:

1. A planet orbits the Sun in an elliptical path, with the Sun occupying one of the two
foci of the ellipse.

This means that the trajectory of a planet around the Sun is not a perfect circle but an elongated
circle, or ellipse. The Sun is positioned at one of the focal points of this ellipse, influencing the
planet’s path through its gravitational pull. [3], [9]

2.3.2.Kepler’s Second Law

The second law, often referred to as the law of equal areas, states:

2. A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

This implies that a planet moves faster when it is closer to the Sun and slower when it is farther
from the Sun. Despite these speed variations, the area covered by the line connecting the planet
and the Sun remains constant over equal time periods. This law highlights the conservation of
angular momentum in planetary motion which is one of the things we are verifying with our
Python code. [3], [9]

2.3.3.Kepler’s Third Law

The third law establishes a relationship between the time a planet takes to orbit the Sun and its
distance from the Sun:

The square of a planet's orbital period P is directly proportional to the cube of the semimajor axis
a of its orbit:
P, 5 iy
(o ={ 3

Here, P is the orbital period measured in years, and a is the semimajor axis measured in
kilometers. This law shows that the time it takes for a planet to complete one orbit increases
rapidly with the size of its orbit. [3], [9]

2.3.4.Newton’s Contribution

Isaac Newton later provided the theoretical underpinning for Kepler’s laws through his law of
universal gravitation. Newton’s law states:



Gmym
F= 1mM;

r2

where F is the gravitational force between two masses m; and m,, G is the gravitational constant,
and r is the distance between the masses. Newton demonstrated that Kepler’s empirical laws
could be derived from the basic principles of motion and gravity. His work showed that the force
of gravity not only keeps the planets in their elliptical orbits but also accounts for the variations
in their speed and the precise nature of their paths.

By understanding Kepler's laws, we gain insight into the mechanics of planetary motion, which
are fundamental to both classical and modern astronomy. These laws lay the groundwork for
more advanced studies in celestial mechanics and astrophysics, providing a clear framework for
understanding how celestial bodies interact in space. [3], [4], [9]

2.4. General Solution to the Two-Body Problem

To solve the two-body problem, which involves predicting the motion of two masses under
mutual gravitational attraction, we start by understanding the positions and velocities of the
masses. Given two masses m,; and m, at positions r; and r,, moving with velocities v; and v,,
our objective is to describe their motion over time. [3], [6], [7]

2.4.1.Newton's Second Law and Gravitational Force

Newton's second law of motion states that the force acting on an object is equal to the mass of
that object multiplied by its acceleration:

F =ma

As mentioned earlier Newton’s law of gravitation states that the force between two masses is
given by:

Gmym,
=—
For mass m,, the force due to m, is:
myms
Fy =mya, =G
2 22 2

where a, = #, is the acceleration of m,.

Rewriting this, we get:

mym;

mzfz = G

Dividing both sides by m,:



A similar equation applies to m;:

. G m;m;
mqt; =
141 Tz
which simplifies to:
msp
H=0—
1 7"2

2.4.2.Relative Motion

To simplify the problem, we consider the relative motion of the two masses. Let r = r, — r;be the
vector from m, to m,. The relative acceleration 7is:

¥ = ‘F'z _— 7.'.'1
Substituting the expressions for #,and #;:
. mq m;
=G T—z -G ?

Since both forces are in the direction of # we combine them:

mq +m2

r= 2

r

Rewriting, we get the equation of motion for the relative position r:

m; +m,
—_—T

P =— =

T

This equation indicates that the relative acceleration is directed towards the other mass and is
proportional to the inverse square of the distance between them. [3], [9]

2.4.3.Polar Coordinates and Angular Momentum

To further solve this equation, we transform to polar coordinates, which are more convenient for
describing orbital motion. In polar coordinates, the position vector r is given by:

7=rf



where r is the radial distance and #is the unit vector in the radial direction. The velocity v has two
components: radial v, and tangential vy :

v =7t +10
where r is the radial velocity, @is the angular velocity, and fis the unit vector perpendicular to f.
The acceleration aalso has two components:
di=(F—1r02)t+ (rf +2r9)8

Substituting these into the equation of motion, we separate the radial and tangential components:

g m;+m
#—162 = —G———2
T
r6 4+ 270 =0

The second equation reflects the conservation of angular momentum h, which is constant for an
isolated system. Angular momentum per unit mass h is defined as:

h =126

Thus, 8 = %, and the radial equation becomes:

2.4.4.Solving for the Orbit

To find the orbit, we use the fact that the specific angular momentum h is constant. Integrating
the angular momentum equation:

h =1r2%0

we substitute § = -

r2’

into the radial equation and solve for (6):
d?u G(mqy +my)
a2 T T 2

where u = % The solution to this differential equation is:

G(my +my)

u(f) = 2 (1 + ecosB)



Thus, the orbit equation in polar coordinates is:

hZ
"= G(my + m,)(1 + ecosB)

This equation describes a conic section—an ellipse, parabola, or hyperbola—depending on the
eccentricity e. For bound orbits (0 < e < 1),the path is elliptical. For unbound orbits (e > 1), the
path is parabolic or hyperbolic. [3], [9]

2.4.5.Understanding Conic Sections

Conic sections, as described by the orbit equation, are curves formed by the intersection of a
plane with a cone. These curves are essential in understanding the possible trajectories of celestial
bodies under the influence of gravity. The three main types of conic sections are:

1. Ellipse (0 <e <1): An elongated circle where e is the eccentricity. When e = 0, itis a
perfect circle. This represents a bound orbit where the celestial body remains in a stable,
recurring path around the central mass.

2. Parabola (e = 1): An open curve where the object escapes the gravitational influence of
the central mass. This represents an unbound orbit where the celestial body follows a path
that allows it to escape the gravitational pull of the central mass.

3. Hyperbola (e > 1): An open curve where the object passes by and moves away
indefinitely. This also represents an unbound orbit where the celestial body follows a
trajectory that takes it past the central mass and then continues to move away indefinitely.

By understanding the motion equations, relative motion, and transformations to polar
coordinates, we can solve the two-body problem and predict the trajectories of celestial bodies
under mutual gravitational attraction. This detailed approach allows us to accurately describe the
motion of planets, moons, and other celestial objects in their orbits. [3], [9]

2.4.6.Conic Sections and Energy Considerations
2.4.6.1. Energy in Two-Body Systems

The total energy E of a system, combining kinetic and potential energies, determines the
trajectory type. The equation for total energy is given by:

1 um
E=-u?—"—
2 2 T
where y = ;lnln:: is the reduced mass, vis the relative velocity, and r is the distance between the
1 2

two masses. [3], [9]

2.4.6.2. Velocity in Radial and Tangential Components

The velocity v is decomposed into radial v, and tangential vy components:

10



v2 =724 (ré)z

Using the conservation of angular momentum h = 26, and substituting § = r%, we obtain:

This leads to:

2

2= 1o 42
v _p_z( e ecosf)

2.4.6.3. Relating Energy to Orbit Type

Substituting v2and r from the orbit equation into the energy equation, and simplifying using
chosen angles, we derive:

2

h um
E=-u—1+e?)——
2'up2( +e%) 5

This simplifies to:
m
E="(e2-1)
2p

Here, the sign of E determines the orbit type:

« Elliptical Orbit (£ < 0): Bound system with e? < 1.
e Parabolic Trajectory (E = 0): Critical energy state with e = 1, the object escapes.
« Hyperbolic Orbit (£ > 0): Unbound system with e? > 1.

This relationship between energy and the conic section type illustrates Kepler's first law in a
dynamical context, showing that the total energy's sign and magnitude directly dictate the nature

of an orbit. This chapter effectively demonstrates how Newtonian mechanics underpin Kepler's
laws, providing a profound understanding of orbital dynamics.

3. Methods

11



3.1, Python Introduction

Python is a versatile and powerful programming language widely used in various fields, from
web development to data analysis and scientific computing. One of the key features that make
Python so powerful is its rich ecosystem of modules and libraries. Modules in Python allow
developers to extend the language's capabilities by providing additional functionality and tools.
This modular approach encourages code reuse, simplifies complex tasks, and fosters
collaboration by allowing developers to share their solutions with others. Here, we explore some
essential Python modules and their uses in scientific and engineering applications.[1], [2], [3]

3.2, Python Modules
3.2.1.numpy

numpy is the fundamental package for numerical computing in Python. It provides support for
arrays, matrices, and many mathematical functions to operate on these data structures
efficiently.[10]

e Array Operations: numpy arrays are more compact and faster than Python lists. They
support element-wise operations, making data manipulation straightforward and efficient.
This efficiency stems from the fact that numpy arrays are implemented in C, allowing for
operations to be executed much faster than in pure Python.

o Linear Algebra: numpy includes a vast library of linear algebra functions, such as matrix
multiplication, eigenvalue computation, and singular value decomposition. These
functions are essential in scientific computing for tasks like solving systems of linear
equations and performing matrix factorization.

 Statistical Functions: numpy also offers numerous functions for statistical analysis,
including mean, median, standard deviation, and more. These functions are crucial for
data analysis and interpretation.

o Integration with Other Libraries: numpy arrays are the standard for numerical data in
Python and are used as the base for many other scientific libraries, such as pandas, scipy,
and scikit-learn. This widespread adoption ensures compatibility and ease of use across
different libraries and applications.

« Random Number Generation: numpy includes robust capabilities for generating random
numbers, which are essential for simulations, statistical sampling, and randomization
tasks in various scientific applications.

3.2.2.o0deint

odeint is a function from the scipy.integrate module used for integrating ordinary differential
equations (ODEs). It is particularly useful in modeling dynamic systems in fields like physics.

[11]
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e Solving ODEs: odeint provides an easy interface to solve ODEs given initial conditions
and a function defining the system of equations. It employs efficient numerical methods,
such as the LSODA algorithm, to handle both stiff and non-stiftf ODE systems.

o Customizability: Users can adjust solver parameters and step sizes to handle stiff or non-
stiff systems effectively. This flexibility allows for fine-tuning the solver's performance
based on the specific characteristics of the problem being solved.

e Real-World Applications: It is commonly used to model population dynamics, chemical
reactions, and mechanical systems. For example, in epidemiology, odeint can model the
spread of infectious diseases by solving the differential equations governing the
interactions between different population groups, or like in our case, modeling the motion
of bodies in a solar system.

o Integration with Other Libraries: odeint works seamlessly with numpy arrays, making
it easy to integrate with other scientific computing workflows that use numpy for data
manipulation and analysis.

3.2.3.math

The math module provides access to mathematical functions and constants, such as
trigonometric functions, logarithms, and constants. [13]

o Basic Operations: It includes functions for arithmetic operations, power and logarithmic
functions, and trigonometry. Functions like sqrt, log, and sin are implemented in a highly
optimized manner, ensuring both accuracy and speed.

o Special Functions: The module offers functions like factorial, gcd, and combinations,
which are useful in various computational problems. For example, the factorial function is
essential in combinatorics, while ged is used in number theory.

o Constants: The math module provides a collection of mathematical constants, such as pi,
e, and tau, which are fundamental in various mathematical computations.

o Performance: Functions in the math module are implemented in C, making them faster
than equivalent Python code. This performance boost is particularly noticeable in
applications that require repeated evaluations of mathematical functions.

o Precision: The math module offers high precision in its calculations, which is critical in
scientific computing where accuracy is paramount.

3.2.4. matplotlib.pyplot

matplotlib.pyplot is a state-based interface to matplotlib, a comprehensive library for creating
static, animated, and interactive visualizations in Python.[12]

« Plotting: matplotlib.pyplot provides a MATLAB-like interface for creating various types
of plots, such as line graphs, bar charts, histograms, and scatter plots. This interface is
designed to be easy to use, making it accessible to both beginners and experienced users.

« Customization: Users can customize every aspect of a plot, including labels, colors, line
styles, and more. This level of customization allows for the creation of publication-quality
visualizations that can convey complex data effectively.
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Integration: It integrates well with numpy and pandas, allowing for easy visualization of
data stored in these structures. This integration is crucial for data analysis workflows,
where visualizing data is often a key step in the analysis process.

Interactivity: matplotlib.pyplot supports interactive plots that can respond to user inputs,
such as zooming and panning. This interactivity enhances the exploratory data analysis
experience, allowing users to delve deeper into their data.

Animations: The module also supports creating animations, which can be useful for
visualizing changes in data over time, such as in simulations or time-series analysis.

3.2.5.ast2000tools.utils

The ast2000tools.utils module is part of the ast2000tools package designed for the AST2000
course at the University of Oslo. This module includes utility functions that aid in various tasks
throughout the course.[8]

Version Checking: The utils module provides functions to check for newer versions of
the ast2000tools package, ensuring users have the latest updates. This feature helps
maintain compatibility and access to the latest improvements and bug fixes.

Seed Generation: It includes functions like get seed, which generates a seed from a
username, crucial for reproducibility in simulations. Reproducibility is a cornerstone of
scientific research, allowing results to be verified and experiments to be repeated under
the same conditions.

Ease of Use: These utility functions simplify many routine tasks, enhancing productivity
and reducing the likelihood of errors. For example, the get path function helps locate data
files, ensuring that file paths are correctly handled across different operating systems.
Logging: The module includes logging functions that help track the progress and status of
long-running computations, providing insights into the simulation process and aiding in
debugging.

Other University of Oslo's AST2000 lecture and problem specific calculations.

3.2.6.ast2000tools.solar_system

The ast2000tools.solar_system module is another component of the ast2000tools package,
specifically designed to simulate and study procedurally generated solar systems.[8]

Solar System Representation: The SolarSystem class models a solar system with
properties like star mass, planet types, and orbital parameters. This detailed representation
allows for the study of a wide range of astrophysical phenomena, from planetary
formation to orbital dynamics.

Visualization: Users can generate videos of the time evolution of their solar systems,
aiding in the understanding of orbital mechanics. These visualizations provide an intuitive
way to grasp the complex interactions between celestial bodies.

Interactivity: The module supports interactive exploration and visualization of simulated
planetary systems, providing an immersive learning experience. Users can manipulate
parameters and observe the effects on the system in real-time, enhancing their
understanding of astrophysical concepts.
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e Procedural Generation: The solar system module uses procedural generation techniques
to create unique solar systems based on initial conditions. This approach allows for the
exploration of a vast range of possible configurations and phenomena, making it a
powerful tool for both education and research.

3.2.7.Python Conclusion

Python's modular architecture and extensive library ecosystem make it an ideal language for
scientific computing and data analysis. By leveraging modules like numpy, odeint, math,
matplotlib.pyplot, ast2000tools.utils, and ast2000tools.solar_system, developers and researchers
can perform complex calculations, visualize data, and simulate dynamic systems with ease. Each
module brings its unique strengths, contributing to Python's versatility and power as a
programming language. These tools not only enhance productivity but also open up new
possibilities for innovation and discovery in various fields of science and engineering.[1], [2]

4.Results and Discussion
4.1. Python Code Implementation and Analysis

Below is a detailed breakdown of the Python. The goal is to simulate the trajectories of bodies in
the solar system using both the Euler-Cromer method and the odeint integrator.

4.1.1.Importing Modules and Setting Seed

import ast2000tools.utils as util
# importing the module utils from the package ast2000tools

sece = wEll gete geeel Velnrtpee )
N uclingithel funet fonlge EliscediE romitheNmedulle®utc SisBtolgencraiteNsccd

import ast2000tools.solar system as mysys

# importing the module solar system from the package ast2000tools
system = mysys.SolarSystem(seed)

# using the function SolarSystem to create my solar system

import ast2000tools.constants as const
# importing the module constants from the package ast2000tools

system.print info ()
# printing out an info about my solar system

MR =SSy s Eemistarimass
# mass of the star from my solar system in units of Solar mass

M = Msi*const.m sun
#

mass of the star from my solar system in SI units (kilogram)
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The code begins by importing several necessary modules. Specifically, it imports utils from the
ast2000tools package under the alias uti1, which provides utility functions needed for the
simulation. It then uses the get seed function from the utils module, passing the string
"dhrupec' as an argument to generate a unique seed. This seed is essential for initializing the
solar system in a reproducible manner.

Next, the code imports the solar system module from ast2000tools with the alias mysys. It
then creates an instance of the SolarSystem class using the previously generated seed. This
instance represents the simulated solar system. To understand the properties and initial conditions
of the solar system, the print info method of the system object is called, which prints out
details about the solar system, such as the number of planets, their masses, and initial positions
and velocities.

The mass of the star in the solar system is retrieved from the system object and stored in the
variable Ms i, which is initially in units of solar masses. To convert this mass into kilograms, it
multiplies Msi by the solar mass constant (const.m_sun) and stores the result in the variable m.
Additionally, the code calculates a gravitational constant term M as 472, which will be used later
in force calculations.

# Declaring variables as lists of 8 empty spots (because I will use
them for all 8 planets)

X Sat, Y Sat, state 0, mi2, mi , xi init , yi init , vxi init ,
wayat bt ool (00t 08 et (0 avavat (08 s (08 iy (0 e e h|EeiEeinyg,. )
trajectory yv , vxi , vyi , xi , yi = ([None]*8 for i in range(21))

# setting 1 to zero

To prepare for the simulation, several lists are initialized, each with eight empty spots,
corresponding to the eight planets in the solar system. These lists will hold various parameters
such as positions, velocities, and forces. This initialization is done using a list comprehension that
creates 21 separate lists, each filled with None values to start.

A loop counter variable i is then initialized to zero. This will be used later in the integration loop.

4.1.2. Function “force”

# defining function "force" for Euler-Cromer method
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import math as m
# importing the module math to be used for trigonometry
def force(x,y):
# defining a function for calculating components of the force from
cordinates
= X¥**D + y**2
square of the planet-star distance
F = const.G *M * mi[i] / r2
the force of the star to the planet
theta = abs (m.atan (y/x))
orbital angle
Fx = F*m.cos (theta)
calculating x-component of the force
Fy = F*m.sin (theta)
calculating y-component of the force
if x>=0 and y>=0:

Dx w= il
Byox=— =1

# the first quadrant of the coordinate system with the star at the
origin x-componet of the force should be negative and y-componet of the
force should be negative
if x<=0 and y>=0:
HySr—S
# the second quadrant of the coordinate system with the star at the
origin y-componet of the force should be negative

if x>=0 and y<=0:
iy W= =l
# the fourth quadrant of the coordinate system with the star at the
origin x-componet of the force should be negative
TEEETen, 85K 11
# returning both components of the force

= 116100
# number of steps for my Euler-Cromer loop
delta t = 20000
# time interval for next step of my Euler-Cromer loop
# orbital period: N * delta t = x hours = x days

Following this, the code defines a function named force which calculates the components of the
gravitational force acting on a planet due to the star. The function takes two arguments, x and y,
representing the x and y coordinates of the planet. Within the function, the square of the distance
between the planet and the star is calculated. Using this distance, the gravitational force




magnitude F is computed. The angle of the force vector, theta, is calculated using the
arctangent function. The x and y components of the force are then determined using trigonometric
functions and returned by the function taking into the account x and y components of the force
according to the quadrant.

4.1.3.Function "model_2BP"

# defining function "model 2BP" for numerical calculation
# Here, I am calculating with AU

rl = np.array([state[0], state[l]])

# position vector of the planet
magrl = np.sqgrt(rl.dot(rl))
# magnitude of the position vector (distance)
Al = (-GM * rl * Msi) / magrl**3
# acceleration vector due to gravitational force
return np.array([state[2], state[3], A1[0], AL1[1]])
# return the derivatives of the state vector

The mode1 2BP function is defined to handle the two-body problem, where the motion of a planet
under the gravitational influence of a star is computed. This function will be used for numerical
integration, specifically with the odeint integrator from SciPy. The function mode1 2BP takes
three arguments: state, t, and mi. The state vector contains the current position and velocity
components of the planet, t represents the current time (though it is unused in the function but
required by odeint), and mi is the mass of the planet (although it is not used directly within this
function).

Within the function, the position vector r1 is extracted from the state vector, comprising the x
and y positions. The distance between the planet and the star is calculated using the magnitude of
the position vector r1, achieved through the dot product of the vector with itself followed by
taking the square root. This distance calculation is crucial for determining the gravitational force.

Next, the acceleration vector A1 due to the gravitational force is computed. This involves scaling
the position vector r1 by the gravitational constant term GM and the star's mass Ms1, and then
dividing by the cube of the distance magr1. This step ensures that the force follows the inverse
square law of gravitation.

The function then returns the derivatives of the state vector, which include the current velocity

components and the computed acceleration components. These derivatives are essential for the
odeint integrator to advance the simulation over time.
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By defining the mode1 2BP function, the code effectively models the gravitational interaction
between the star and each planet, allowing for accurate simulation of their orbits. This function
seamlessly integrates with the rest of the simulation framework, providing a robust method for
computing planetary motions. [3], [6], [7], [9]

4.1.4.Integrating Ordinary Differential Equations

# Calculating numerically
# Everything is in a loop so I can calculate for all the bodies

import numpy as np
from scipy.integrate import odeint

for i in range (8):

mi2[i] = system.masses[i]
# mass of the planet (with index i) in units of Solar mass

mi2[i] *= const.m sun
# mass of the planet (with index i) in ST units (kilograms)

xi init[i] = system.initial positions[0] [i]
# initial x-positions of the planet (with index i) in astronomical
units (AU)

yi init[i] = system.initial positions[1] [i]
# initial y-positions of the planet (with index i) in astronomical
units (AU)

vxi init[i] = system.initial velocities[0] [i]
# initial x-velocity of the planet (with index i) in AU per year
(AU/yr)

vyl Gnitli ]S ="system. initialve llocitics 1] ]
# initial y-velocity of the planet (with index i) in AU per year
(AU/yr)

state 0[i] = [xi init[i], yi init([i] , vxi init[i], vyi init[i]]
# initial state vector in SI units

t = np.linspace (0, 100, 300)
# Simulates for a time period [s]

soll = odeint (model 2BP, = state O [i],t, args—(mi2 1],
# Solving the equation using odeint

X Seeldl] = sellls, O
# X-coord (in AU) of satellite over time interval

W Sewe(dll = sellls, L]
# Y-coord (in AU) of satellite over time interval

Integrating this function into the overall code involves setting up the initial conditions and calling
the odeint function for each planet. For each planet, an initial state vector is created, consisting
of initial positions and velocities. A time array is generated to span the total simulation time,
divided into the appropriate number of time steps. The odeint function is then called with the
model 2BP function, the initial state vector, and the time array, passing the planet's mass as an
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additional argument. The resulting state array, containing positions and velocities at each time
step, is converted to astronomical units and stored for plotting the trajectories. [1], [2], [3], [9],

[11]

4.1.5. Euler-Cromer Method

# Using Euler-Cromer method to solve differential equation and get the
coordinates, velocities and forces
# Everything is in a loop so I can calculate for all the bodies

for i in range (8):
mif[i] = system.masses[i]
# mass of the planet (with index i) in units of Solar mass
mi S = consE,misun
# mass of the planet (with index i) in ST units (kilograms)
xi init[i] = system.initial positions[O0] [i]
# initial x-positions of the planet (with index i) in astronomical
units (AU)
zaniimitel NI = e onis e A
# initial x-positions of the planet (with index i) in SI units (meter)
Wk atieulis [[5L]) = ehgeieeinl santiesteill jerersitisaiens L] [laL]
# initial y-positions of the planet (with index i) in astronomical
units (AU)
Wik atimalie (5L 5= @eniEiE o AU
# initial y-positions of the planet (with index i) in SI units (meter)
wxi Gni el S = system ini tialve llocit e s 105 4]
# initial x-velocity of the planet (with index i) in AU per year
(AU/yr)
vxi init[i] *= comnst.AU/const.yr
# initial x-velocity of the planet (with index i) in RS ()
vyl Gnitli S ="system.initialve llocitics 1] ]
# initial y-velocity of the planet (with index i) in per year
(AU/yr)
vyi init[i] *= const.AU/const.ys
# initial y-velocity of the planet (with index i i units (m/

wat O] = sal atentie (Al ]

declaring and initializing a variable that loop
yi O[i] = yi init[i]

declaring and initializing a variable that = loop
vxi O0[i] = vxi init[i]

declaring and initializing a variable that loop
vyl O[i] = vyi init[i]

declaring and initializing a variable that I need loop
B O] By 0 S = Eorcel(Ea atnatt 5t [F iyai i se [40])

declaring and initializing a variable that I need loop
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trajectory x[i]= [xi O0[i]/const.AU]
# forming list of x-cordinates (in AU) that I need for ploting the
orbit

trajeatorylv [ENIN=N[ i N0 W cons T i
# forming list of y-cordinates (in AU) that I need for ploting the
orbit

for j in range(1,N+1):
# the main Euler-Cromer loop for calculating coordinates, velecities
and forces
vxi[i] = vxi O[i] + delta t * Fx 0[i] / mi[i]
# next value of x-component of the planet velocity
vxi O0[i] = vxil[i]
saving this value to be used in the next step as previous
wyi il = wyl O[]k delta € * Ey O[]/ mi]i]
next value of y-component of the planet velocity

vyl 0[i] = wvyil[i]

saving this value to be used in the next step as previous
xi[i] = xi O[i] + delta t * vxi[i]
next value of x-component of the planet position
xi 0[1] = xi[i]
saving this value to be used in the next step as previous
yi[i] = yi O[i] + delta t * wvyil[i]
next value of y-component of the planet position
yi O[i] = yili]
saving this value to be used in the next step as previous value
Fx 0[i], Fy O[i] = force(xi[i],yi[i])
next value of x-component and y-component of the force on the planet
trajectory_x[i].append(xi[i]/const.AU)
appending next value of x—-component (in AU) into
EraCCEOr Y
trajectory yl[i].append(yi[i]/const.AU)
# appending next value of x-component (in AU) into
trajectory x

The Euler-Cromer integration method is then implemented in a nested loop. The outer loop
iterates over each time step, while the inner loop iterates over each planet. For each planet, the
velocity components are updated using the previously calculated force components and the time
step. The position components are then updated using the new velocity values. The force
components are recalculated based on the new positions, and the positions (in AU) are appended
to the trajectory lists trajectory x and trajectory y.[3],[9]

4.1.6.Consveration of Angular Momentum
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# Function to calculate tangential velocity using vis-viva equation

def tanqentialiveiocity(r, a):
return np.sqrt(GM * (2/r - 1/a))

# Function to calculate angular momentum
def angular momentum(m, r, V):
return m * r * v

# Calculate aphelion and perihelion distances

semi major axes = system.semi major axes * const.AU # Convert from AU
to meters

eccentricities = system.eccentricities

sislac e chigitameEs = seml negjeE see = (L o ceesntrleileies) i Aphcllilemn
distance

perithelfionidils tancc s =Nsemilimasjeriiaxe sSEs (NI =Scccen E rilcitthiic 5) #
Perihelion distance

# Verify conservation of angular momentum
for i in range(8):

mi = system.masses[i] * const.m sun # mass of the planet in SI
units

r aphelion = aphelion distances[i]

riper ithelliloni=Npe rihcillifonldis tance sl

al = Sscmilimas orlaxcsi(H]

# Calculate tangential velocities
v_aphelion = tangential velocity(r aphelion, a)
v_perihelion = tangential velocity(r perihelion, a)

# Calculate angular momenta
L aphelion = angular momentum(mi, r aphelion, v _aphelion)
L perihelion = angular momentum(mi, r perihelion, v perihelion)

print (f"Planet {i+1}:")

print (FAnguilas mementum atsaphalfionii ilfapheltiont: L8e I kgeme 27/ s )

print (f"Angular momentum at perihelion: {L perihelion:.3e}
kg*m~2/s")

print (f"Difference: {abs(L aphelion - L perihelion):.3e}
kg*rm*2/s\n")

# Save system snapshot
system.generate system snapshot (filename='system snapshot with angular
momentum.xml')

This part of the code is designed to check whether the angular momentum of each planet in the
solar system is conserved between its aphelion and perihelion.




To begin, the tangential velocity of a planet in its orbit can be calculated using the vis-viva
equation, which relates the tangential velocity vat a distance r from the focus of the orbit (the
star) to the semi-major axis a of the orbit and the gravitational parameter GM:

2 1
v=[6M(2-2)
This equation is implemented in the tangential velocity function, which takes r (the

distance) and a (the semi-major axis) as inputs and returns the tangential velocity v.

The angular momentum L of a planet is given by the formula L = mrv, where m is the mass of
the planet, r is the distance from the star, and v is the tangential velocity of the planet at that
distance. This formula is implemented in the angular momentum function, which takes m
(mass), r (distance), and v (tangential velocity) as inputs and returns the angular momentum L.

Next, the code calculates the aphelion and perihelion distances. The semi-major axis a and the
orbital eccentricity e are used to determine these distances using the following formulas:

e Aphelion distance: r, = a(1 + e)
o Perihelion distance: 1, = a(1 —e)

The semi-major axes are converted from astronomical units (AU) to meters, and the aphelion and
perihelion distances are calculated.

The main part of the code then loops through each planet in the solar system. For each planet, it
performs the following steps:

1. The mass of the planet is converted to SI units.

2. The tangential velocities at aphelion and perihelion are calculated using the
tangential velocity function.

3. The angular momenta at aphelion and perihelion are calculated using the
angular momentum function.

4. The results, including the angular momenta at aphelion and perihelion and their
difference, are printed for each planet.

Finally, the system snapshot is saved to a file named
'system_snapshot with angular momentum.xml'.

This part of the code verifies the conservation of angular momentum by ensuring that the angular
momentum calculated at two distinct points in the orbit (aphelion and perihelion) is consistent.
Any significant difference would indicate a deviation from the expected conservation of angular
momentum. [3], [9]

4.1.7.Plotting

# Plotting
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import matplotlib.pyplot as plt
# importing the module pyplot from the package matplotlib

# Plotting first plot = odeint
for i in range (8):
PUEE pillo e (SARS it |8 AANS eiE )
# using lists (odeint Integrator) X Sat[i] and Y Sat[i] to plot full
orbit of the planets
plt.axhline (color='gray', zorder=-1)
# adding the x-axis in the plot
plt.axvline (color='gray', zorder=-1)
# adding the y-axis in the plot
plt.suptitle('odeint Integrator Results', fontsize=14,
fontweight="bold")

plt.legend(title="Planets")

plt.xlabel ('X Position (AU) ")

plt.ylabel ('Y Position (AU) ")

# Add a legend with the title 'Planets'and labels for axis
plt.grid()

# adding a grid in the plot

plt.axis('equal')

# Ensure that the x and y axes have the same scaling
plt.show ()

# showing the plot with one full orbit of my planet
system.generate system snapshot (filename='system snapshot.xml')

# Plotting first plot = Euler-Cromer
for i in range (8):
plt.plot (trajectory x[i], trajectory yl[i])
# using lists (Euler-Cromer) trajectory x and trajectory x to plot full
orbit of the planets
plt.axhline (color="'gray', zorder=-1)
# adding the x-axis in the plot
plt.axvline (color="'gray', zorder=-1)
# adding the y-axis in the plot
plt.suptitle('Euler-Cromer Method Results', fontsize=14,
fontweight="bold")

plt.legend(title="Planets")

plt.xlabel ('X Position (AU) ")

plt.ylabel ('Y Position (AU) ")

# Add a legend with the title 'Planets'and labels for axis
plt.grid()

# adding a grid in the plot

plt.axis('equal')




# Ensure that the x and y axes have the same scaling
plt.grid()
# adding a grid in the plot

plt.show ()
# showing the plot with one full orbit of my planet
system.generate system snapshot (filename='system snapshot.xml')

In the final part of the code, the results of the numerical simulations are visualized using the
matplotlib.pyplot module, which is imported under the alias p1t. This section consists of two
main plotting routines: one for the results obtained using the odeint integrator and another for
those obtained using the Euler-Cromer method. Additionally, snapshots of the solar system's state
are generated and saved.

First, the matplotlib.pyplot module is imported to enable the creation of plots. This module
provides a MATLAB-like interface for creating static, animated, and interactive visualizations in
Python.

The code then generates a plot for the planetary orbits as calculated by the odeint integrator. A
loop iterates over each of the eight planets, and for each planet, the p1t.plot function is called
with X _sat[i] and Y sat[i], which contain the x and y coordinates of the planet's orbit over
time. This plots the complete trajectory of each planet on the graph. To enhance the readability of
the plot, horizontal and vertical lines are added at y=0 and x=0, representing the axes, using
plt.axhline (color="gray', zorder=—1)andplt.axvline(color='gray', zorder=-1)
respectively. The zorder=-1 parameter ensures that these lines are drawn behind other plot
elements.

To clearly label the plot, a title is added using p1t.suptitle ('odeint Integrator Results',
fontsize=14, fontweight='bold'), specifying that the results shown are from the odeint
integrator. The title is styled with a font size of 14 and bold weight. Additionally, p1t.grid() is
called to add a grid to the plot, making it easier to visualize the trajectories against the
background. Finally, p1t.show () is used to display the plot, allowing the user to see the full
orbits of the planets as computed by the odeint integrator. After the plot is displayed, the code
generates a snapshot of the current state of the solar system and saves it to an XML file named
system_snapshot.xnd,uﬁngthe
system.generate_system_snapshot(filename='system_snapshot.xml')Connnand.ThE
snapshot can be used for further analysis or visualization.

The second part of the plotting section generates a plot for the planetary orbits as calculated by
the Euler-Cromer method. Similar to the previous part, the code iterates over each of the eight
planets, and for each planet, the p1t.plot function is called with trajectory x[i] and
trajectory yl[i], which contain the x and y coordinates of the planet's orbit over time as
computed by the Euler-Cromer method.

By using the matplotlib.pyplot module, the code creates clear and informative plots of the

planetary trajectories calculated by both the odeint integrator and the Euler-Cromer method.
These plots provide a visual comparison of the two numerical methods, showing the orbits of the
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planets over the simulated time period. Additionally, the generation and saving of system
snapshots in XML format ensure that the current state of the solar system is preserved for further
analysis or visualization.[3], [9], [12]

4.2, Results

4.2.1.Information about our Solar System

The system.print info () command outputs detailed information about our solar system as
requested in the console.

Information about the solar system with seed 97471:

Number of planets: 8

Star surface temperature:

Star radius: 1.08283e+06

Star mass: 1.6643 solar masses

Individual planet information. Masses in units of m sun, radii in km,
atmospheric densities in kg/m"3, rotational periods in Earth days.
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4.2.2. Angular Momentum Results

Planet 1:

Angular momentum at aphelion: 5.759e+31 kg*m"2/s
Angular momentum at perihelion: 5.759e+31 kg*m"2/s
Difference: 9.007e+15 kg*m"2/s

Planet 2:

Angular momentum at aphelion: 2.731e+31 kg*m"2/s
Angular momentum at perihelion: 2.731le+31 kg*m"2/s
Difference: 0.000e+00 kg*m"2/s

Planet 3:

Angular momentum at aphelion: 6.599e+29 kg*m"2/s
Angular momentum at perihelion: 6.599%e+29 kg*m"2/s
Difference: 0.000e+00 kg*m”2/s

Planet 4:

Angular momentum at aphelion: 2.228e+29 kg*m"2/s
Angular momentum at perihelion: 2.228e+29 kg*m"2/s
Difference: 3.518e+13 kg*m”2/s

Rillanc ot

Angular momentum at aphelion: 3.812e+29 kg*m"2/s
Angular momentum at perihelion: 3.812e+29 kg*m"2/s
Difference: 0.000e+00 kg*m”2/s

Planet 6:

Angular momentum at aphelion: 6.018e+28 kg*m"2/s
Angular momentum at perihelion: 6.018e+28 kg*m"2/s
Difference: 8.796e+12 kg*m"2/s

Planet 7:

Angular momentum at aphelion: 2.986e+32 kg*m"2/s
Angular momentum at perihelion: 2.986e+32 kg*m"2/s
Difference: 7.206e+16 kg*m"2/s




Planet 8:
Angular momentum at aphelion: 0 kg*m”~2/s

Angular momentum at perihelion: 1.493e+30 kg*m”~2/s
Difference: 2.815e+14 kg*m"2/s

The results demonstrate that the angular momentum for each planet is conserved between
aphelion and perihelion, with very minor differences that are likely due to numerical precision
errors. This is consistent with the physical expectation that angular momentum is conserved in
the absence of external torques.

2
The small differences observed (e.g., 9.007 - 1015kng for Planet 1) are many orders of

magnitude smaller than the total angular momentum, indicating that the numerical methods used
are accurate and that the physical principle of angular momentum conservation holds true for the
simulated system.

4.2.3.Trajectory Plots

Odeint integrator plot result:

odeint Integrator Results

20 4

15 4

10 4

o= :

E Planets

c 0- —— Planet 1
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é‘ —5 4 —— Planet 3
= —— Planet 4
—10 1 | Planet 5
_15 - — Planet 6
Planet 7
20 4 Planet 8
30 20 -10 0 10 20 30

X Position (AU)

Image 1. Odeint integrator plot result. Each planet is represented by a given color.
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Euler-Cromer method plot result:

Euler-Cromer Method Results
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Image 2. Euler-Cromer method plot result. Each planet is represented by a given color.

The trajectory plots show the circular orbits of the planets around the star. These plots are
consistent with Kepler's first law of planetary motion, which states that planets move in elliptical
orbits with the star at one focus. The relative positions and movements of the planets are clearly

visible, with inner planets having shorter, faster orbits and outer planets having longer, slower
orbits.

4.2.4. Additional Discussion

If we compare the trajectories from both our plots, the Odeint and Euler-Cromer methods, we
observe similar, if not identical, paths for our planets. This suggests that the calculations from
both methods yielded closely aligned results. To confirm this, we will perform several additional
calculations, focusing on first 3 orbits:

1. Increase the plot resolution

# Create a figure and axis object with increased size and resolution

fig, ax = plt.subplots(figsize=(14, 10), dpi=300)

2. Opverlay both sets of orbit results on a single plot for direct comparison.
3. Focus on plotting only the first three orbits for a clearer view of the initial
trajectories.
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# Plotting first plot = Numerical integration

for i in range(3):

ax.plot(XTsat|i], ¥isat[i], label=f'odeint Integrator {i+1}t)
i ey Ibhlgies) ((eelsalioie LausEeppiees)) »C Seve L] ciael 3 See|lal] Ee jplleie Epllil
orbit of the planets

# Plotting second plot = Euler-Cromer
for i in range(3):

axtplioti(trajcctoryixiFtFaSt oo e tory vl e s Eyilic ===ty
label=f'Euler-Cromer {i+1}"') # using lists (Euler-Cromer)
trajectory x and trajectory x to plot full orbit of the planets

4. Increase the time frequency in the odeint integration from 300 to 1000 for a finer
time resolution.

t = np.linspace (0, 100, 10000)

# Simulates for a time period [s]

Upon reviewing the updated plot, we observe a perfect overlap between the two trajectories.
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Orbit Results Comparison

odeint Integrator and Euler-Cromer Method

Planets

—— odeint Integrator Planet 1
~—— odeint Integrator Planet 2
—— odeint Integrator Planet 3
—— Euler-Cromer Planet 1
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\
\
P

—— Euler-Cromer Planet 2
—— Euler-Cromer Planet 3

\
\
N\

Y Position (AU)
o

-2 4

4 e 0 2 a
X Position (AU)
Image 3. Euler-Cromer method and odeint plot results with increased resolution for 3 closest

planets.

5.Conclusion

This thesis successfully demonstrates a comprehensive numerical analysis and visualization of
the trajectories of celestial bodies within our solar system. By employing both the Euler-Cromer
method and the odeint integrator in Python, we were able to solve the differential equations that
describe the motion of these bodies under the influence of gravitational forces. The graphical
representations of the resultant trajectories, along with the analysis of variations in speed and
position, validate the accuracy and reliability of these numerical methods.

Our findings are consistent with fundamental principles of celestial mechanics, particularly
Kepler's laws of planetary motion. The trajectories plotted using both numerical methods show
elliptical orbits, with the star at one focus, aligning perfectly with Kepler's first law. Additionally,
the comparison of results from the Euler-Cromer method and the odeint integrator reveals
similar, if not identical, planetary paths, confirming the robustness of our computational
approaches.
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Furthermore, the conservation of angular momentum was verified through the analysis of
aphelion and perihelion data, illustrating the applicability of Newtonian mechanics in predicting
celestial motions. By increasing the resolution and overlaying the trajectories from both methods,
we ensured the precision of our simulations.

In summary, the use of Python and its powerful libraries, such as numpy, scipy, and matplotlib,
has proven to be highly effective for simulating and visualizing complex astrophysical
phenomena. This thesis not only underscores the importance of numerical methods in solving
celestial mechanics problems but also highlights the potential for further research and exploration
using computational tools. Future work could expand on this foundation by incorporating
additional factors such as perturbations from other celestial bodies, relativistic effects, or more
complex multi-body interactions.

The Python code developed for planetary trajectories can easily be adapted to study other celes-
tial bodies. For example, it can be used to analyze a newly discovered asteroid that may pose a

threat to Earth.We could predict its trajectory to determine where and when it might intersect
with Earth's orbit and assessing the potential for a close approach or even a collision.
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